Skip to main content

MKL with C++

          C++ program with MKL 



i have  written a  c++ example for Matrix eigenvalue/eigenvector problem.
In the Documentation MKL all the examples are given in FORTRAN/C .
To find all the eigenvalue and optionally all the eigenvector of real symmetric matrix i have used the lapack function dsyev from MKL .
In This example i have created a matrix which correspond to 3D Tight Binding Hamiltonian. This is quit common in Condensed Matter Physics community.



#include
#include
#include "mkl.h"
#define dm 12
#define N dm*dm*dm
#define LDA N

int main()
{
    int n = N, lda = LDA, info, lwork;
    double wkopt;
    double w[N];
    double *a =new double [N*N];


    int i,j,k,l,m,o,pd[dm];
    for(i=0;i        pd[i]=(i+1)%dm;
    for(i=0;i    for(j=0;j        a[i*N + j] =0.00;


//******Matrix :: 3D Tight Binding Hamiltonian ***************
       for(i=0;i       for(j=0;j       for(k=0;k        {
                l=i*dm*dm + j*dm + k;
                m=pd[i]*dm*dm + j*dm + k;
                a[l*N + m] =-1.0;
                a[m*N + l] =-1.0;

                m=i*dm*dm + pd[j]*dm + k;
                a[l*N + m] =-1.0;
                a[m*N + l] =-1.0;

                m=i*dm*dm + j*dm + pd[k];
                a[l*N + m] =-1.0;
                a[m*N + l] =-1.0;
        }

//*******************Diagonalization*************************************
    lwork = -1;
    dsyev( "N", "U", &n, a, &lda, w, &wkopt, &lwork, &info );
    lwork = (int)wkopt;
    double *work= new double[lwork];
    dsyev( "N", "U", &n, a, &lda, w, work, &lwork, &info );
    delete[] a;
    delete[] work;
//*****************Write eigen values to a file :-------------------------
    std::ofstream dfile("eigen.dat");
    for(i=0;i    dfile << w[i] << std::endl;
    dfile.close();
//************************************************************************
    return 0;
}
To compile this program you need to use this links .
 icpc filename.cpp  -O2 -C -Wl,--start-group /export/apps/ics_2012.0.032/ics/2012.0.032/mkl/lib/intel64/libmkl_intel_lp64.a  /export/apps/ics_2012.0.032/ics/2012.0.032/mkl/lib/intel64/libmkl_core.a -Wl,--end-group -lpthread  -openmp -lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -liomp5   -mcmodel large -shared-intel -traceback

I assume that you have save this program in  filename.cpp file . You should change the above linking path depending upon where you have installed the Intel libraries.


For Newer version just do this : 

icpc filename.cpp -mkl

Comments

Popular posts from this blog

Filling between curves with color gradient or cmap in Matplotlib

I was trying to plot fill_between () in matplotlib with color gradient or any cmap defined in pyplot.  After googleing a lot i couldn't find any solution.  An alternative method is to use imshow() . I have created this example :  import numpy as np import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch xx=np.arange(0,10,0.01) yy=xx*np.exp(-xx) path = Path(np.array([xx,yy]).transpose()) patch = PathPatch(path, facecolor='none') plt.gca().add_patch(patch) im = plt.imshow(xx.reshape(yy.size,1),  cmap=plt.cm.Reds,interpolation="bicubic",                 origin='lower',extent=[0,10,-0.0,0.40],aspect="auto", clip_path=patch, clip_on=True) #im.set_clip_path(patch) plt.savefig("out.png") Source: Matplotlib Example  http://matplotlib.org/examples/pylab_examples/image_clip_path.html  

pm3d map of gnuplot in matplotlib

In gnuplot pm3d map plot a 3d data into a surface with color as value of "z". Lets say we have a data file something like this .. 0.00    0.00    0.00 0.00    1.00    0.00 0.00    2.00    0.00 0.00    3.00    1.9358 0.00    4.00    3.618 0.00    5.00    5.17 0.00    6.00    6.93 0.00    7.00    8.82 0.00    8.00    10.692 1.00    0.00    0.00 1.00    1.00    0.00 1.00    2.00    0.00 1.00    3.00    2.1318 .... ... In gnuplot prompt we will do something like this . set pm3d map; set dgrid  20,20 sp "data.dat" u 1:2:3    and this will produce a figure something like a...

Lecture notes on Condensed Matter Theory

Though there is lot of good text books on condensed matter physics. But there are many good lecture note available by various people. Here i will list some of them . These are mainly on the subject of strongly correlated eletrons. 1.  "Quantum Magnetism Approaches to Strongly Correlated Electrons"  by Assa Auerbach     ( http://arxiv.org/abs/cond-mat/9801294v1   ) 2. "Theory of Superconductivity" by N. B. Kopnin      ( https://ltl.tkk.fi/wiki/images/8/8f/TheorySC10.pdf ) 3. "SISSA Lecture notes on Numerical methods for strongly correlated electrons" by Sandro Sorella and Federico Becca      ( http://people.sissa.it/~sorella/Simulazioni.pdf ) 4. "Quantum Theory of Condensed Matter" by John Chalker       ( http://www-thphys.physics.ox.ac.uk/people/JohnChalker/qtcm/lecture-notes.pdf ) 5. "Quantum Condensed Matter Physics - Lecture Notes" by Chetan Nayak      ( http:/...